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Methods of the theory of functions of a complex variable are applied to problems of the deformation of thin plates of constant 
or variable thickness considered in three dimensions. To that end, a third complex potential is added to the two complex 
Kolosov-Muskhelishvili potentials. The components of the displacement vector and the stress tensor are represented in terms 
of these three complex potentials. The formulations if the problems, characteristic for cases in which complex variables are used 
in problems of elasticily theory, are investigated. © 2000 Elsevier Science Ltd. All rights reserved. 

The theory of functions of a complex variable is of considerable value in solving two-dimensional 
problems of elasticity theory [1]. However, problems concerning the deformation of thin plates of variable 
thickness have hitherto remained outside its sphere of applicability. It is also noteworthy that the system 
of equations for the problem of a plane stressed state need not necessarily satisfy all the compatibility 
conditions, and so solutions of problems of a plane stressed state are generally approximate [2]. Finally, 
in some problems, such as those related to the study of the stress-strain state in the neighbourhood of 
a crack tip, even in plates of constant thickness, it seems preferable to take the three-dimensional nature 
of the stress and strain distribution into consideration. Obviously, the solution of these problems is 
possible only when they are considered in the context of three-dimensional elasticity theory. We 
will do this, proceeding from the general representation of the solution for a thin plate of variable 
thickness. 

1. T H E  S T R E S S - S T R A I N  I N  A T H I N  P L A T E  
O F  V A R I A B L E  T H I C K N E S S  

Let us assume thai: a thin elastic plate of variable thickness is deformed by forces uniformly distributed 
over its thickness. We introduce a rectangular cartesian system of coordinates OXIX2X3 in such a way 
that the coordinate plane XIOX2 coincides with the middle plane of the plate and the coordinate axis 
0)#3 is perpendicular to it. We will assume that the plate is symmetrical about the middle plane and 
that its boundary surfaces are described by the equationsx3 = +--h(xl, x2). The normal to the boundary 
surface of such a plate will not necessarily coincide with the normal to the middle plane, so that the 
conditions for a plane stressed state are violated [3]. For that reason, we will proceed from the general 
equations of elasticity theory, assuming, however, that the plate is thin. 

Let us assume that the components ul and u2 of the displacement vector u = (ul, u2, u3) are 
independent of the third coordinatex3, but u3 = u3(xl,x2,x3). Since under these conditions of deformation 
the plate will remain symmetrical about the middle plane, we conclude that u3 is an odd function o f x  3 
and therefore, assuming the plate is thin, we can confine our attention to the first term of the expansion, 
writing. 

Un(Xl, x2, Xn)=g(xl, x2)xn 

This implies the following expressions for the components of the strain tensor 
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_ Out 3u2 
eli - 3x---~-' e "  = 3x-"2-' ea3 = g(x,, x2) 

1 (3u l  3u~)  I 3 g x ~ ,  I 3g 

the Hooke's law, relations 

1 

i~il = 710"11 - V(0"22 + 0"33 ) l ,  P_. 
1 l + v  

t22 ='~[0"22 -V(0.1i +033)1, £12 =-"~"0.12 

Taking into consideration the relation 

°~2012 = c~2OI1 32022 j,i.V2g= °~20.11 c~2022 

which follows from the first two of equilibrium equations (1.2), we deduce from compatibility condition 
(1.4) that 

V2(GII +022)- VV2a33 =0 (1.5) 

It follows from Hooke's law that 

033 = Ee33 +V(Oll +022) = EI+v(oII +022) 

The components of the stress tensor for an elastic material may be written in the form 

0.,, =k0+21a-~xUt, o22 =k0+21xb~-~22, oa3=XO+21.tg(x,, x2) 

(3ul 3u2") =g~xgzx3, o z ~ = g ~ - 2 x  a (1.1) <,,. 

0 = 3u i  + 3u2 + 
3xl ~ g 

where ~. and ~ are the Lam6 constants. 
In the general case, the components of the stress tensor (1.1), which define the stressed state of the 

deformed body, must satisfy the equilibrium equations 

•ij, j = 0  

and certain compatibility conditions, which we take to be the Beltrami-Michell equations [3]. 
Taking the above assumptions into account, we write the equations of equilibrium in the form 

(1.2) 

The third equation shows that g(xl, x2) is a harmonic function. 
The sum of the components O'll 4- 0"22 of the stress tensor obviously satisfies the equation 

V2(oril +0"22)=0, V 2 = 3 2 3 2 ~--~-2 + 3x ~ (1.3) 

Indeed, we substitute into the compatibility condition 

o~2F..I i 32£;22 ^ o32E12 
0x~ t" ~ 1 2  =z ~x-'~2 (1.4) 
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Taking the third equilibrium equation (1.2) into account, we obtain 

V2033 = VV2(OII +022) 

The validity of Eq. (1.3) follows from this equality and from (1.5). 
We now introduce the stress function O(Xl, x2): 

o l ,  + = a- 22 , 022  + = 2 , 0 , 2  = ax ax2 

This function obviously satisfies the first two equilibrium equations (1.2), and moreover 

o32(~ ~2(]D 

Substituting these expressions into Eq. (1.3) and using the fact that the function g(xl, x2) is harmonic, 
we get 

V2(V2q>- 21J.g) = V 4 ~ -  2~tV2g = V4d) = 0 

that is, the stress function is a biharmonic function. We may therefore apply the methods of the theory 
of functions of a complex variable. 

2. THE C O M P L E X  R E P R E S E N T A T I O N  OF THE C O M P O N E N T S  OF THE 
D I S P L A C E M E N T  V E C T O R  AND THE STRESS AND STRAIN TENSORS 

It is well known (see, for example [1]) that any biharmonic function may be expressed using Goursat's 
formula as functions of complex variables z = Xl +/x2; ~ = Xl -/x2: 

2~(z, ~) = g~0(z) + z~(g) + Z(z) + ~(g) (2.1) 

In the plane theory of elasticity, we have the following representations for combinations of the 
components of the stress tensor [1] 

al, + (~22 = 2St, 31 = [9' (z)  + 9 ' ( z ) ]  (2.2) 

022-Ott +2i012 =2S 2, S 2 =['~ffl'(Z)+~l'(z)] (2.3) 

where V(z) = Z'(z). 
However, the problem under consideration, concerning the deformation of a thin plate of variable 

thickness, cannot generally be considered in the context of two-dimensional problems of elasticity theory. 
Therefore, the complex representations for the components of the displacement vector and stress and 
strain tensors will undergo certain changes. 

It follows directly from the representation of the stress function that 

~92~ 
Oil +022 +2lag = 4 ~Z3F, (2.4) 

GII --G22 +2io'j2 = --4 
~2(~) 

(2.5) 

Using Goursat's formula (2.1), we thus deduce from (2.4) and.(2.5) that 

Oil +O22 + 21.tg =2S I (2.6) 

022 - Oll + 2 i o l 2  = 2S2 (2.7) 

The last relations express combinations of components of the stress tensor in terms of two functions 
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of  a complex  variable.  However ,  unlike (2.2) and (2.3), these relat ions also involve a c o m p o n e n t  of  the 
strain tensor,  E33 ---- g ( x 1 ,  X2). Let  us express this quantity,  as well as the c o m p o n e n t s  of  the d isp lacement  
vector  ul and u2, in complex  form. 

We introduce a complex  d isp lacement  by 

I t  can be shown that  

D = U I + iu 2 

2OD 3u I 3u 2 .(t)u 2 bu l'~ 
5f=  , - - + - - =  

Using H o o k e ' s  law, we obta in  f rom (2.5) 

~D 02(I) 
4 g - ~ -  = -4  "~2 

This equat ion  will obviously be satisfied if we put  

4laD(z, g) = f ( z ) -  4 

or, using Goursa t ' s  fo rmula  (2.1), 

ell - e22 + 2iel2 (2.8) 

0(P(z, ~) 
3~ 

4/M)(z, ~) = 4g(u I + iu 2) = f ( z )  - 2[~0(z) + Z~'(Z) + ~(~')] (2.9) 

This expression is an analogue o f  Kolosov 's  fo rmula  for  displacement ,  as may  readily be  verified by 
reducing it to that  formula:  

2g(u I + iu:,) = ×¢P(z)- z~ ' (Z)  - ~(~') 

3 - 4v in the case of plane strain, 

= (3 - v)/(1 + v) in the case of a plane stressed state 

Indeed, differentiating Eq. (2.9) with respect to z and then taking real parts we obtain 

= i ( S a - S , ) ,  Sa = / [ f ' ( z ) + . f ' ( D ]  (2.10) Ell +E22 

In the case of a plane strain, it follows from Hooke's law that 

OII +099 
Sll +e22 = 2(~.+p.) 

Taking (2.2) into account, we substitute this relation into (2.10). The result is 

f ' ( z )  + j;'(~) = 4(~. +2g) SI = 8(1 - v)S I 
k + p  

Thus, taking the relation between the functions f(z) and t0(z ) as in the form 

f(z) = 8(I - v)~(z) 

we arrive at Kolosov's formula for the case of plane strain 
Similar arguments show that formula (2.9) can be reduced to Kolosov's formula for a two-dimensional stressed 

state. In that case the relation between the functions f(z) and to(z) is taken in the form 

8 
f ( z )  = to(Z) 

I+V 

To express the strain e33 ( that  is, the function g) in complex form, we consider  the relations of  H o o k e ' s  
law 
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Oil = ~(Ell +E22 + E33)+21.EII 

o~ = X(i-:ll +e22 + e~)  +2larva 

Adding these equafities together and adding 24zg to the left- and right-hand sides of the resulting relation, 
we get 

1 
g = 2(~. + ~t---"-"~(Gll +(YZ~ +21"tg)--(£11 +022) 

and, in view of (2.t5) and (2.10), we finally obtain 

~,+21.t _ 1 S 
g = ~ ~ ]  -; 3 (2.11) 

This representation now enables us to modernize relation (2.6), eliminating the function g 
from it 

2~t 
all +az2 = - £+lX St +2S3 (2.12) 

Thus, the real and imaginary parts of (2.7) and (2.9), together with relations (2.11) and (2.12), yield 
six equations for determining six quantities: three components of the stress tensor 1311, 1322, 1312, two 
components of the displacement vector Ul, u2, and the value of the third strain E33 = g. 

However, the stress-strain state is determined not only by these quantities but also by the components 
1333, 1313 and 1323 of the stress tensor (and of the strain tensor, E33 , el3 and e23). It should also be borne 
in mind that these quantities may be used in the boundary conditions. For example, when the boundary 
conditions at the boundary surface of the plate are prescribed, the components of the stress tensor 
indicated above will be involved to some degree or another. Hence, they must be expressed in terms 
of the functions ot! a complex variable introduced previously. 

Omitting the straightforward calculations, we present the formulae for the components of the stress 
tensor in terms of the functions of a complex variable 

P S - S  It (ii]j =$3-~- - "~  i -Re$2,  022-  3- '~-+g$1+ReS2 

3~+4p Si _2S3 ' °=2 = imSz (2.13) 

ol:l = (Tl - T3)x~, 

c23 = i(T 2 - T 4)x3, 

Tl= k : : ;  [qY'(z)+~"(~)], T3--- l [ f ' ( z ) +  f"(~)] 

X + 2p. ,,.z. -"'z'" ¼[f"(z)- f"(~')l T2 = ~,+B [tp ( )-~0 t-)J, T4 = 

It can be shown that these expressions for the components of the stress tensor in terms of three 
functions of a complex variable satisfy the Beltrami-Michell compatibility conditions, and since (by 
construction) they satisfy the equations of equilibrium, they may be used to solve problems of elasticity 
theory of the class under consideration. 

3. BOUNDARY CONDITIONS 

It is well known that the boundary conditions in problems of elasticity theory are determined either by 
given external distributed forces F = (fl, f2, f3), by given displacements of points on the body surface, 
or by external surface forces specified on one part of the surface and displacements on the other. 
Boundary conditions of the first type are expressed by the equalities 

%nj =f/ 
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where n/are the components of the unit vector along the outward normal to the surface (to the contour) 
at the point under consideration. Boundary conditions of the second type are expressed by the 
equalities 

Ui = qi 

where qi are given functions on the surface (the contour). 
To solve problems of the deformation of thin plates of variable thickness, one must thus determine 

the three functions of a complex variable, tp(x), f(x) and ~(x). These functions must satisfy certain 
conditions at the boundaries of the body being deformed. Thus, the need arises to formulate boundary 
conditions with reference to these complex functions. 

Boundary conditions of the first type are known to reflect the equilibrium of a certain elementary 
volume of the deformed body. As applied to the case of thin plates of variable thickness, this volume 
will be a certain triangle of variable thickness (in the case when distributed stresses are specified on 
the contour, e.g. holes in the plate). The other version of the boundary conditions of a similar type, 
which differs somewhat from the first, is imposed on the plate surface. 

We will first consider the case when the boundary conditions are specified on the contour of 
a cut in the plate. Let us assume that ds is an arc element on the contour of the boundary of the 
deformed body. The components of the unit vector of the outward normal n = (nl, nz, n3) represent 
the cosines of the angles between this vector and the basis vectors el, e2 and e3 and are equal, respectively, 
to [1] 

n I =cos(n, el)=--  ~ ,  n2=cos(n, e2)= dxt ' n3 =cos (n ,  e )=0 

Since the plate thickness is variable, we single out a layer of thickness dx3. Then, for unit length of 
the contour we have 

(yijnjd~3 =' f/dx 3 

Integrating these expressions with respect to x3, we get 

h{xt,x2) 
I aijnjdx3=2hfi 

-h(xl ,xz) 

When the load is symmetrical about the middle plane, the resultant is f3 = 0 and, since a31 and a32 are 
linear functions of x3, the third relation becomes an identity 0 -- 0. Thus, for the class of problems under 
consideration, it is meaningful to formulate the boundary conditions (along the contours of holes in 
the plate or the contours bounding the body) using only the first two equations; taking into consideration 
that a31 and a32 depend linearly on x3, we take these equations in the form 

(Yklnl = .fk (XI, X2), k, 1 = I, 2 

Using the stress function to represent the components of the stress tensor, and the differential relations 
determined above for the components of the direction vector, we have 

+ =:, 
ax ax  as 

( a2¢, ) dx, 

These relations may be reduced to the form 

04) - d  ~-~l +lxgdxz = f2ds (3.i) 

We form a complex expression 
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(ft + if2 )ds = - td  + t + tgg(dx t + idx 2 )ds 

Using the expression for the stress function, we obtain 

d[~p(z) + z~P'(~) + ~(~)1 - ktgdz = i(f~ + if2)ds 

Since in this case the differential has the form 

d=TzdZ + ae 
it follows from the last relation that 

641 

[tp'(z)dz + ~'(~)dz + z~"(~)d~ + ~'(~)ar~] - ktgdz = i ( f  t + i f  2 )ds 

We now use formula (2.11); we obtain 

S3dz - ~ S t dz + -S2dz = i ( f  t + if  2 )ds (3 .2) 

On the contour of a circular hole of radius a, we have 

z = ae i°, dz = iaeiOdO, d'~ = -iae-i°dO 

As a result, Eq. (3.2) becomes 

a [ ( S  3 -~+~[t S ~eia_~2e_iO]dO=i(fl +if2)d ) 

But if there are no stresses on the circular contour, the expression in square brackets will vanish. 
Finally, changing to conjugates, we obtain the following well-known expression [1] 

~t - $2 e2iO = 0 s3- + s, 

which is very convenient for prescribing boundary conditions for the stresses on the contour of a circular 
hole. 

We will now express the boundary conditions for the stresses in the plate surface in terms of the 
functions of a complex variable introduced previously. Since we are considering plates which are both 
symmetrical about the middle surface and symmetrically loaded about it, we will confine attention to 
only one side of tile plate. 

Lets us assume that the form of the plate surfaces is defined by the equations 

x 3 = +h(z, g) 

The components 11, 12 and 13 of the vector N = (11, 12,/3) normal to the plate surface have the form 

11 hj +h  2 l~ = i  hI - h2 !.~ I 
A A A 

Oh Oh a=4rZa-  

The boundary conditions of the first type on the plate surface have the form 

Iffijlj = Pi 

Using the representations derived above for the components of the stress tensor, we obtain at 
x 3 = h  
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, . - r , ) = A p j  

- ~ +  S! + I - T2)= AP2 

2h + + ½ + 

3~. + 4fa St + I $3 = Ap  3 
~.+l.t 

Boundary conditions for the displacements are formulated on the basis of representation (2.9) for 
the displacement vector in complex form 

41x(u r + iu 2) = f ( z )  - 2[~0(z) + z~'(~) + ~(~)] = 41.tq(z, [)  

and displacements u3 of the plate surfaces are prescribed using Eq. (2.11) 

U 3 = g(z ,~)h(z ,~)  = S I - i . t S 3  h(z ,~)  = Q(z ,~)  

4. ON T H E  U N I Q U E N E S S  OF T H E  C O M P L E X  P O T E N T I A L S  

The question of the degree to which the complex potentials introduced above are uniquely defined is 
solved essentially as in [1], except that here we are concerned with three potentials. The components 
o11, 022 and o12 of the stress tensor are determined using relations (2.7) and (2.12). In this case, besides 
these components of the stress tensor, some of the other components among 033 , o"13 and 023 must also 
be specified. Let us assume that the specified stress is 033 , as given by the third relation of (2.13). Given 
these components of the stress tensor, relation (2.12) and the third relation of (2.13) form a system of 
equations in the real parts of the functions (p'(z) andf(z) .  Solving these equations for the combinations 
$1 and $3, we obtain 

~'+bt [011 +022 +033] S~ = 3Z+2t t  

! 
$3 = 2(37t + 2~) [(37~ + 4tt) (o I j + o22) + 21.to33 ] 

Hence it follows that, for given stresses, the real parts of the functions q¢(z) and f ' ( z )  are uniquely 
defined, but their imaginary parts are only defined apart from the pure imaginary constants 
iA~, iC~, where A~, C~ are real constants. Since 

q~(z) = ~qF(z)dz, f ( z )  = ~ f ' ( z ) d z  

it is obvious that adding expressions of the form/A~z + ct0, iC*oz + Y0 to the functions ~0(z) does not change 
the stressed state of the deformed body. 

Proceeding further from relations (2.7) 

022 - oil + 2i012 = 2[~qF'(z) + ¥'(z)] 

we can show [1] that ~'(z) is uniquely defined, while ~(z) is defined apart from the complex constant 
130. 

For given stresses, one can choose constants [1] 

Ao, Co, tx0, ~/0, 1~0 (4.1) 

so that the following equalities hold 
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to(0) = 0, Ira(to'(0)) = 0, f(0) = 0, Im(f'(0)) = 0, W(0) = 0 

- this essentially exhausts the arbitrariness in the choice of the constants. 
If the components of the displacement vector are given, the components of the stress tensor are 

uniquely defined, whence we conclude that in this case too the functions t0(z), ~(z) and f(z) must be 
defined with the accuracy indicated above. It follows directly from (21.9) that in that case the increment 
A(u~ + iu2) to the components of the displacement vector is defined apart from 

4IaA(u t + iu 2) = iC~z + (~o - 20to - 2~o) 

Hence we conclude that the displacements will be uniquely defined provided that 

C;=O, 'y0 - 2 a o - 2 ~ o  = 0 (4.2) 

Thus, for given ditsplacements, the degree of arbitrariness in the choice of constants (4.1) is determined 
by (4.2). We will now consider the possibility of choosing the quantities 

toe0) = 0 ( o ,  we0) = 0), : 0 )  = 0 

thus eliminating the arbitrary element in the choice of the complex constants and ensuring that the 
displacements are uniquely specified [1]. 

Despite the fact that the components of the displacement vector and the stress tensor are single- 
valued functions, the functions of the complex variable to(z), ~I/(z) andf(z) may turn out to be multivalued. 

Indeed, these holomorphic functions will be single-valued in any simply connected domain occupied 
by the body. Let us assume now, following the approach in [1], that the domain is multiply connected, 
that is, the domain occupied by the body is bounded by simple closed contours L1, L2 . . . . .  Lm, 
Zm+l, the last of which contains all the others in its interior. It is assumed that these contours do not 
intersect. 

It was established above that the real parts of the functions to'(z) andf'(z) are single-valued. However, 
a circuit around any closed contour L/, enclosing Lk will cause the imaginary parts of these functions 
to receive increments of the form 2n/,4~ and 2rdC], whereA~, C~ are real constants. Such an increment 
is guaranteed by the function In z, and we shall therefore assume that 

in m 

to'(z) = Y. A~ In(z - z~ ) + F,, i f (z)  = Y. C~ In(z - zk) + F/ (4.3) 
k=l k=l 

where m is the number of contours forming the boundary of the body occupying a certain domain; 
F~ and Ff are holcmorphic functions in that domain; zk is a fixed point, arbitrarily chosen within the 
contour Lk. 

Integrating relations (4.3), we obtain (summation will henceforth be carried out from k = 1 to k =m) 

z 

~ z )  = I to'(z)dz +const = ~,A~F k + l,p +const 

z 

f ( z )  = S f ' ( z )dz  + const  = E C~Fk + I/+ const  (4 .4)  
z4j 

z z 

rk =(z-z~)ln(z-zk)-(z-zk),  t~ = I F.paz, t /= I F/az 
tab zo 

However, the integrals I~ and I/are functions of a complex variable z which, when a circuit is described 
around one of the contours, may receive increments of the form 2rda k and 2~/yk, respectively; ak and 
"¢k are generally complex constants (the factor 2n is introduced for convenience). Proceeding exactly as 
before, we have 

I~ = ~.o~ k In(z-zk)+to'(z) ,  l / = ~ y ~  In ( z - zk )+  f*(z)  (4.5) 

where ~0*(z) and f*(z) are single-valued functions. 
Using (4.5), we write Eqs (4.4) in the form 
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tpCz) = zY. A~ ln(z - zt) + 5".l~t In(z - zt) + ~00 (z), 13 t = (a  t - A~zk ) 

f ( z )  = Z~. C~ In(z - Zk) + E ~ t  In(z - Z t ) + fo(Z),  5~ = ('fk -- C~z t )  

q)o(Z) = (p *(Z)~,A;  ln(z - z t  ), f o ( z )  = f * ( z ) +  ~ , C ~( z  - Zk ) 

where 13k and 8k are certain complex constants. 
Similar arguments establish that ~'(z) is a holomorphic function and 

q)(Z) = ~ B~ In(z - Zt ) + Wo(Z) 

(4.6) 

(4.7) 

where ~0(z) is a single-valued function. 
The coefficientsA ~, B~, C~, ~k and 6k obey certain relations, implied by the fact that the displacements 

and stresses are single-valued. In the fist place, we use the relation 

411(u; + iu 2 ) = f ( z )  - 2[tp + Z~'(~) + ~'(~)1 

Substituting Eqs (4.6) and (4.7) into this relation, we obtain the following expression for the increment 
imparted to the displacements by a circuit around the kth contour in the positive direction 

41"t(u' + iu2 ~t = 2rci(z C~ + 5 t - 2~1 t + 2-B;) (4.8) 

Obviously, a necessary condition for the displacements to be single-valued is that expression (4.8) be 
equal to zero, which yields two equations 

C~ =0, 5k -213, +2~; =0 

The components of the force vector applied to the contour element ds are determined by the 
expressions 

Pt = 2f;hds,  P2 = 2fzhds 

It is more convenient to express the components as a combination (Pi + iP2)2hds; transforming this 
combination in the same way as the analogous expression in the previous section, we obtain 

(4.9) 

A necessary condition for the stresses to be single-valued is that expression (4.9) receive zero increment 
for any circuit around a closed contour L~ enclosing the kth contour L k  [1]. This yields an expression 
for the increment of the forces (or equivalently, of  the stresses) due to a circuit around the kth contour, 
using (4.3) and the fact that ~t'(z) is holomorphic: 

Hence it follows that A ~ = 0 for any k since, as established previously, C]  = 0 for all k. 
The expression for the differential of the moment M of the forces applied to an element ds of the 

contour Lk about the origin is 

a M  = (x t f  2 - x~ i  )2h( z, £)ds 

Taking relations (3.1) into account, we obtain 
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This relation may be written as follows in terms of the complex potentials 

It is obvious that the constantsA~ = 0, C~ --- 0 determined above also guarantee that the moment will 
be single-valued. Thus, the complex functions under consideration are indeed holomorphic. 
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